Data Mining and Machine Learning

Subject code: MA5832:03 

This subject will provide students with a range of algorithms based on machine learning techniques for advanced data analysis and mining. These algorithms and techniques fall within the most common machine learning paradigms, namely, unsupervised, semi-supervised, and supervised learning. In particular, students will learn sophisticate machine learning methods for clustering, outlier detection, classification, feature selection, and regression.

Software platform: 


Learning outcomes

  • Explain what machine learning for data mining is about and identify the most common tasks and roles of machine learning in the realm of data mining
  • Describe, choose, and apply unsupervised machine learning methods for descriptive data mining tasks, such as clustering and outlier detection
  • Describe, choose, and apply supervised techniques for dimensionality reduction via feature selection
  • Describe, choose, and apply semi-supervised and/or supervised machine learning

Assessment

Assessment for this course will occur at various times across the seven-week study period. Tasks may include online quizzes, discussion board activity, portfolio development, case studies, reflection, literature reviews presentations and reports.Feedback will be provided to you throughout the study period as well as a final grade at the conclusion of the study period.

Please note, unit structure and content are subject to change. Contact your JCU Online student advisor on 1300 535 919 for more information based on your particular circumstances.

 

Want to apply or need help with a specific question?

Contact us or request a call-back to discuss:

  • Entry Requirements
  • Courses Available
  • Fees/FEE-HELP
  • Study Period Options
  • Online Study Model
  • Application Assistance

Enrolment Advisors are available to chat via phone at the following times:

Monday and Tuesday: 8am - 6pm (AEST)
Wednesday and Thursday: 8am - 7pm (AEST)
Friday: 8am - 5pm (AEST)

Speak to a Student Enrolment Advisor

Request a call-back from a Student Enrolment Advisor

Or call us on 1300 535 919

Call Now