Essential Mathematics for Data Scientists

Subject code: MA5801:03

Data science is grounded in mathematics. This subject will provide you with the essential elements of mathematics required for data scientists.

It includes elements of discrete mathematics including logics, sets, proof, functions, relations, graphs and trees; as well as elements of linear algebra including linear systems and matrix formulation, vector spaces, eigenvalues/eigenvectors, singular value decomposition, optimisation and numerical methods. Computational aspects of this course will be developed in MatLab. 

Learn more about JCU's Data Science academics.

Video transcript

Professor White: Hi, my name is Ron White, I'm the Head of the School of Mathematics, Physics and Chemistry here at James Cook University. 

The way we've set this course up is that we'll use our fundamental linear algebra and discrete math to seed some of the fundamental understandings of what we're going to do later on the course; some high-level statistics, computing, algorithm development, etc. 

Associate Professor Belwad: My name is Shawn Ballard. I'm a mathematician - that's my training. I think this subject is really important for the data science program because it gives you the underpinnings of all the mathematics that gets embedded within all the algorithms that are going to be taught in your statistics subjects. 

And you need to operationalise in a context using programming skills and so on. So we're giving you very much the underlying foundation and if you understand that foundation and you're much better off in terms of understanding the limitations and what you have at your disposal in terms of

 

Learning outcomes

Students who successfully complete this subject will be able to:

  • Identify and apply concepts of set theory, arithmetic, logic, proof techniques, binary relations, graphs and trees to solve problems in data science
  • Apply linear algebra and numerical mathematics concepts for optimisation and dimensionality reduction in data science problems
  • Apply and implement concepts in discrete mathematics, optimisation and linear algebra in data science using MatLab.

Assessment

Assessment for this course will occur at various times across the seven-week study period. Tasks may include online quizzes, discussion board activity, portfolio development, case studies, reflection, literature reviews presentations and reports.Feedback will be provided to you throughout the study period as well as a final grade at the conclusion of the study period.

Please note, unit structure and content are subject to change. Contact your JCU Online student advisor on 1300 535 919 for more information based on your particular circumstances.

 

Want to apply or need help with a specific question?

Contact us or request a call-back to discuss:

  • Entry Requirements
  • Courses Available
  • Fees/FEE-HELP
  • Study Period Options
  • Online Study Model
  • Application Assistance

Enrolment Advisors are available to chat via phone at the following times:

Monday and Tuesday: 8am - 6pm (AEST)
Wednesday and Thursday: 8am - 7pm (AEST)
Friday: 8am - 5pm (AEST)

Speak to a Student Enrolment Advisor

Request a call-back from a Student Enrolment Advisor

Or call us on 1300 535 919

Call Now